Fermi Large Area Telescope as a Galactic Supernovae Axionscope
M. Meyer, M. Giannotti, A. Mirizzi, J. Conrad, M. A. Sánchez-Conde, ASI sponsor
Dec - 2017
DOI: 10.1103/physrevlett.118.011103

journal : Physical Review Letters

Volume : 118 ; Issue : 1
type: Article Journal

Abstract
In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into γ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to gaγ≃2×10−13  GeV−1 for an ALP mass ma≲10−9  eV. These values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probe large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to γ rays, stellar cooling anomalies, and cold dark matter. If no γ-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN 1987A by more than 1 order of magnitude.

keywords :

Notes : The Fermi-LAT Collaboration acknowledges support for LAT development, operation, and data analysis from [...] ASI [...]