Human placental lactogen (hPL-A) activates signaling pathways linked to cell survival and improves insulin secretion in human pancreatic islets
Lombardo, Marco F. ; De Angelis, Fabiana ; Bova, Luca ; et al. ; - ASI Sponsor
Sep - 2011
DOI: 10.4161/isl.3.5.16900
ISSN : 1938-2014 ;
journal : Islets

Volume : 3 ; Issue : 5
type: Article Journal

The search for factors either promoting islets proliferation or survival during adult life is a major issue for both type 1 and 2 diabetes mellitus. Among factors with mitogenic activity on pancreatic β-cells, human placental lactogen (hPL) showed stronger activity when compared to the other lactogen hormones: growth hormone (GH) and prolactin (PRL). The aim of the present work is to elucidate the biological and molecular events of hPL isoform A (hPL-A) activity on human cultured islets. We used pure human pancreatic islets and insulinoma cell lines (βTC-1 and RIN, murine and rat respectively) stimulated with hPL-A recombinant protein and we compared hPL-A activity with that of hGH. We showed that hPL-A inhibits apoptosis, both in insulinoma and human islets, by the phosphorylation of AKT protein. Indeed, the antiapoptotic role of hPL-A was mediated by PI3K, p38 and it was independent by PKA, Erk1/2. Compared with hGH, hPL-A modulated at different intervals and/or intensity by the phosphorylation of JAKs/STATs and MAPKinases. Moreover, hPL-A induced PDX-1 intracellular expression, improving beta cell activity and ameliorating insulin secretion in response to high glucose stimulation. Our data support the idea that hPL-A is involved in the regulation of beta cells activity. Importantly, we found that hPL-A can preserve and improve the ability of purified human pancreatic islets cultured to secrete insulin in vitro.

keywords : placental lactogen hormone, growth hormone,β-cell, apoptosis, islets survival, PDX-1, islets insulin secretion