THE SPECTRAL ENERGY DISTRIBUTION OF FERMI BRIGHT BLAZARS
Abdo, A. A. AA A. AA ; Ackermann, M. ; Agudo, I. ; Cavazzuti, E. ; Colafrancesco, S. ; Giommi, P. ;
Jun - 2010
ISSN : 0004-637X ;
journal : The Astrophysical Journal

Issue : 1
type: Article Journal

Abstract
We have conducted a detailed investigation of the broadband spectral properties of the ³-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi ³-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/³-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these ³-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ½-log ½ F ½ representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, ±ro, and optical to X-ray, ±ox, spectral slopes) and from the ³-ray spectral index. Our data show that the synchrotron peak frequency (½ S peak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 1013 and 1017 Hz in featureless BL Lacertae objects. We find that the ³-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50\% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13\% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter ³-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum ³-ray sources, the correlation between ½ S peak and ³-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

keywords :


More information

publication available also here:
http://iopscience.iop.org/0004-637X/716/1/30